Benha University
Faculty of Engineering Shoubra

Electrical Circuits (2)

Electrical Eng. Dept. $1^{\text {st }}$ year communication 19-21 April 2015

Sheet (7)... $1^{\text {st }}$ order RL/RC DC transient circuits Updated Version

1. A series RL circuit with $R=50$ ohms and $L=10 \mathrm{H}$ has a constant voltage $V=100 \mathrm{v}$ applied at $t=0$ by the closing of a switch. Find
(a) the equations for i, V_{R} and V_{L},
(b) The current at $t=0.5$ seconds
(c) The time at which $V_{R}=V_{L}$.
(d) Find the equations for P_{R} and P_{L}.
2. In the series circuit shown in Fig. 1 the switch is closed on position 1 at $t=0$, thereby applying the 100 volt source to the RL branch, and at $t=500 \mu \mathrm{sec}$ the switch is moved to position 2. Obtain the equations for the current in both intervals and sketch the transient.

Fig. 1
3. Repeat Problem 2 with the polarity of the 50 volt source reversed.
4. A series $R C$ circuit with $R=5000$ ohms and $C=20 \mu f$ has a constant voltage $V=100 \vee$ applied at $t=0$ and the capacitor has no initial charge. Find the equations of i, V_{R} and V_{c}.
5. The $20 \mu \mathrm{f}$ capacitor in the RC circuit shown in Fig. 2 has an initial charge $q=500$ micro coulombs with the polarity shown in the

Benha University
Faculty of Engineering Shoubra

Electrical Circuits (2) Electrical Eng. Dept. $1^{\text {st }}$ year communication 19-21 April 2015
diagram. $A \dagger t=0$, the switch is closed, thereby applying the constant voltage $\mathrm{V}=50$ volts. Find the current transient.

Fig. 2

6. In the RC circuit of Fig. 3 the switch is closed on position 1 at $t=0$ and after 1 TC is moved to position 2. Find the complete current transient.

$$
\text { Fig. } 3
$$

7. Determine the charge transient for Problem 6 and differentiate to obtain the current.

Good Luck

